Frictional Behaviors of 3D-Printed Polylactic Acid Components With Spiral-Groove Surface Textures Under Oil Lubrication

Author:

Xu Jimin1,Liu Ning1,Zhang Fang2,Du Jun1,Zheng Cheng1,Gao Xin1,Liu Kun1

Affiliation:

1. Hefei University of Technology School of Mechanical Engineering, , Hefei 230009 , China

2. Taiyuan University of Science and Technology Engineering Research Center of, Heavy Machinery of Ministry of Education, , Taiyuan 030024 , China

Abstract

Abstract With the rapid development in additive manufacturing technology, three-dimensional (3D) printing process has been extensively utilized for the prototype manufacturing of industrial components. It is becoming possible and fascinating to directly fabricate surface textures for tribological applications by 3D printing. In this study, a series of polylactic acid (PLA) components with spiral-groove surface textures for the application prospect in the field of mechanical seals were fabricated on a commercially available fused deposition modeling (FDM) 3D printer. The frictional behaviors of the printed components under oil lubrication were investigated on an end-face tribometer. The influence of spiral groove number, groove depth, and printing orientation on friction coefficients was discussed. The test results indicate that the frictional performance of linear-printed component with small groove depth is much better than that of homocentric-printed ones with large groove depth. The minimum average friction coefficient of linear-printed component is about 0.07 while the value is about 0.085 for the homocentric-printed ones. In final, a theoretical simulation based on the Reynolds lubricating regime was conducted to clarify the underlying mechanism of the experimental results, and the numerical results show that the hydrodynamic effect of the linear-printed components is more obvious due to the interaction between the linear printing clearances and the rotation of the counterpart.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3