An Analytical Solution for the Initiation and Early Progression of Fretting Wear in Spherical Contacts

Author:

Yang Huaidong1,Green Itzhak1

Affiliation:

1. G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

Abstract

Abstract This article derives analytical solutions to calculate the wear volume at the initiation of fretting motion and its early progression over the first few oscillation cycles. The Archard-based model considers a deformable hemisphere that is contact with a deformable flat block. The material pairs investigated are special alloys, the Inconel 617/Incoloy 800H, and Inconel 617/Inconel 617. The analytical study begins with a unidirectional frictional sliding contact, where the local interfacial sliding distance and the nominal sliding distance at the initiation of gross slip are derived. The obtained analytical expressions for unidirectional sliding are then used to derive the corresponding wear volume for the initiation and early progression of gross slip and the wear volume for a general fretting cycle under elastic conditions. These analytical derivations are all verified by the finite element analysis (FEA). The FEA method and the analytical solutions render virtually identical results for both similar and dissimilar material pairs. The effects of plasticity on the wear volume under elastic–plastic conditions are also investigated. It is found that the fretting wear volumes obtained from the FEA simulations, which include plasticity, are close to those obtained from the analytical expressions for purely elastic regimes. All the results are presented in normalized forms, which can be easily generalized and applied to three-dimensional fretting wear of other material pairs.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference23 articles.

1. An Investigation of the Fretting Corrosion of Closely Fitting Surfaces;Tomlinson;Proc. Inst. Mech. Eng.,1939

2. On Fretting Maps;Vingsbo;Wear,1988

3. Mixed Fretting Regime;Zhou;Wear,1995

4. Progress in Fretting Maps;Zhou;Tribol. Int.,2006

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3