3D finite element analysis of a two-surface wear model in fretting tests

Author:

Basseville Stéphanie,Missoum-Benziane Djamel,Cailletaud Georges

Abstract

AbstractThis article aims at developing a computationally efficient framework to simulate the erosion of two contact surfaces in three-dimensional (3D), depending on the body resistance. The framework involves finite element (FE) resolution of a fretting problem, wear computation via a non-local criterion including a wear distribution parameter (WDP), as well as updating of the geometry and automatic remeshing. Its originality is based on the capability to capture the damage on each surface and obtain local and global results for a quantitative and qualitative analysis. Numerical simulations are carried out for two 3D contact specimens with different values of WDP. The results highlight the importance of correctly modelling wear: One-surface wear model is sufficient from a global point of view (wear volume), or whenever the wear resistance for a body is much higher than that of another one, whereas a 3D two-surface wear model is essential to capturing local effects (contact pressure, wear footprint, etc.) related to the difference in wear resistance of the bodies.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3