Field-Testing of Biodiesel (B100) and Diesel-Fueled Vehicles: Part 3—Wear Assessment of Liner and Piston Rings, Engine Deposits, and Operational Issues

Author:

Agarwal Avinash Kumar1,Agarwal Deepak1

Affiliation:

1. Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India

Abstract

AbstractThis study investigated the use of biodiesel (B100) and baseline mineral diesel in two identical unmodified vehicles to realistically assess different aspects of biodiesel’s compatibility and durability issues with modern common rail direct injection (CRDI) engine-powered vehicles. Two identical vehicles were operated for 30,000 km under identical operating conditions during a field-trial using biodiesel (B100) and mineral diesel. Exhaustive experimental results from this series of tests are divided into four sections, and this is the third paper of this series of four papers, which covers comparative feasibility and wear analyses, underlining the effect of long-term use of biodiesel on wear of cylinder liner and piston rings compared to baseline mineral diesel-fueled vehicle. Surface microstructures at three locations of the cylinder liner were evaluated using scanning electron microscopy (SEM). Wear was found to be relatively lower at all locations of liners from biodiesel-fueled vehicle compared to diesel-fueled vehicle. Surface roughness of cylinder liners measured at different locations showed that it reduced by ∼30–40% at top dead center (TDC), ∼10–20% at mid-stroke, and ∼20–30% at bottom dead center (BDC) for both vehicles, showing higher wear close to TDC compared to mid-stroke and BDC locations. Loss of piston-ring weight was significantly lower for biodiesel-fueled vehicle. Engine tear-down observations and carbon deposits on various engine components were recorded after the conclusion of the field trials. During these field-trials, engine durability-related issues such as fuel-filter plugging, injector coking, piston-ring sticking, carbon deposits in the combustion chamber, and contamination of lubricating oils were found to be relatively lower in biodiesel-fueled vehicle. Overall, no noticeable durability issues were recorded because of the use of biodiesel in CRDI engine-powered vehicle.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3