Experimental Analysis of Hydrogen Enrichment in Waste Plastic Oil Blends for Dual-Fuel Common Rail Direct Injection Diesel Engines

Author:

Anand Tushar1,Debbarma Sumita1

Affiliation:

1. National Institute of Technology Silchar Department of Mechanical Engineering, , Assam 788010 , India

Abstract

Abstract Growing global concerns about fossil fuels highlight the importance of alternative fuels for internal combustion engines. Proper management of plastic waste is crucial due to its environmental impact. The pyrolysis oil process offers a sustainable solution to address plastic waste accumulation. This study explores the impact of a hydrogen-waste plastic oil blend on a modern diesel engine. The research delves into plastic oil and diesel blends at 10%, 20%, and 30% concentrations, with hydrogen provided at 8 L/min. Experiments are conducted at various loads, and hydrogen-enriched fuel blends are analyzed for combustion characteristics, performance parameters, and emissions. Higher blended fuel ratios lead to extended ignition delays, decreased thermal efficiency, and increased emissions. Hydrogen enrichment reduces carbon dioxide, hydrocarbon, and carbon monoxide emissions but raises nitrogen oxide emissions due to higher exhaust gas temperatures. The comparative analysis shows significant improvements in brake thermal efficiency and brake-specific fuel consumption under full load conditions. The blend demonstrates notable reductions in hydrocarbon, carbon monoxide, and carbon dioxide emissions but an increase in nitrogen oxide emissions compared to diesel. The findings indicate that integrating hydrogen into diesel engines enhances performance measures and reduces overall emissions.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3