A Micro-Mechanics Investigation on the Bonding Strength of Heteroepitaxical Film or Strip on a Hard Substrate

Author:

Luo Y. F.1,Rajurkar K. P.1

Affiliation:

1. Nontraditional Manufacturing Research Center, Department of Industrial & Management Systems Engineering, University of Nebraska-Lincoln, 175 Nebraska Hall, Lincoln, NE 68588-0518

Abstract

The bonding strength of deposited metallic thin films or strips on a hard substrate is investigated through micro-strength tests and micro-mechanics analyses. The combination of Ti:W-Au/Cu deposited directly on SiO2/Si substrate was taken as an example in the experiments conducted. Investigations and analyses resulted in a general model concerning the separation mechanism of thin ductile films from a hard brittle substrate. This separation model leads to some systematic methods of improving strip-substrate interconnection strength. Besides strip-substrate adhesion and internal stresses, strip stiffness turns out to be a key factor for the bonding strength of such a system. Hardening processes such as post-deposition heat treatment and work-hardening are proved to be effective in strengthening the bonding strength. These investigations reveal a principle of mechanical compatibility concerning interface micro-deformation. Instead of thin and flexible strips, thick and rigid strips have better compatibility with a hard substrate if the bonded combination is subjected to mechanical loading rather than thermal loading. As far as interface stresses are concerned, a stress distribution strategy is proposed based on the same principle. This original understanding will help to improve common bonding strength problems of various interconnection structures and materials combinations in manufacturing processes.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3