Real-Time Hybrid Switching Control of Automotive Cold Start Hydrocarbon Emission

Author:

Salehi Rasoul1,Shahbakhti Mahdi2,Karl Hedrick J.3

Affiliation:

1. Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran 1458889694 e-mail:

2. Mechanical Engineering Department, Michigan Technological University, Houghton, MI 49931 e-mail:

3. Department of Mechanical Engineering, University of California, Berkeley, CA 94720 e-mail:

Abstract

Reduction of cold start hydrocarbon (HC) emissions requires a proper compromise between low engine-out HC emission and fast light-off of the three way catalytic converter (TWC). In this paper, a hybrid switching system is designed and optimized for reducing HC emissions of a mid-sized passenger car during the cold start phase of FTP-75 (Federal Test Procedure). This hybrid system has the benefit of increasing TWC temperature during the early stages of the driving cycle by switching between different operational modes. The switching times are optimized to reduce the cumulative tailpipe HC of an experimentally validated automotive emission model. The designed hybrid system is tested in real-time on a real engine control unit (ECU) in a model-in-the-loop structure. The results indicate the new hybrid controller reduces the HC emissions over 6.5% compared to nonswitching cold start controller designs.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3