Affiliation:
1. Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611
Abstract
AbstractExplicit dynamic analysis has proven to be advantageous when simulating shock and impact loading, and very small time-scale events. In this article, the feasibility of using a background mesh of B-spline elements for immersed boundary explicit dynamic simulation is studied. In this approach, the geometry is immersed in a background mesh consisting of uniform regular shaped elements to avoid mesh generation difficulties. The boundary conditions are applied using the step boundary method, which uses the equations of the boundaries to construct trial functions that satisfy the essential boundary conditions. An isoparametric formulation is presented for quadratic and cubic B-spline elements and their shape functions are derived from the classical recursive definition of B-splines. The effectiveness of mass diagonalization for B-spline elements is also explored. This approach is validated using several examples by comparing with modal superposition solutions as well as past work using traditional finite element analysis (FEA) and analytical solutions when available.
Subject
Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献