Impedance Sensitivity Analysis Based on Discontinuous Isogeometric Boundary Element Method in Automotive Acoustics

Author:

Sun Yi12,Liping Xie13,Lu Chihua12,Liu Zhien12,Chen Wan4,Li Xiaolong12

Affiliation:

1. Wuhan University of Technology Hubei Key Laboratory of Advanced Technology for Automotive Components;, Hubei Collaborative Innovation Center for Automotive Components Technology, , Wuhan 430070 , China ;

2. Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory Research and Development Center of Fuel Cell and Vehicle Technology, , Foshan 528200 , China

3. Fuzhou University College of Mechanical Engineering & Automation, , Fuzhou 350108, Fujian , China

4. Wuhan University of Technology Hubei Key Laboratory of Advanced Technology for Automotive Components;, Hubei Collaborative Innovation Center for Automotive Components Technology, , Wuhan 430070 , China

Abstract

Abstract Acoustic sensitivity analysis is an essential technique to determine the direction of structural-acoustic optimization by evaluating the gradient of the objective functions with respect to the design variables. However, acoustic sensitivity analysis with respect to acoustic impedance, which is an important parameter representing the interior absorbent material in automotive acoustics, is lacking in the study. Moreover, acoustic sensitivity analysis implemented with conventional numerical methods is time and effort-consuming in automotive acoustics, due to the large-scale mesh generation. In this work, the impedance sensitivity analysis for automotive acoustics based on the discontinuous isogeometric boundary element method is presented. The regularized boundary integral equation with impedance boundary conditions is established, then the sensitivity is derived by differentiating the boundary integral equation. The efficiency of the proposed method is improved by employing the parallel technique and generalized minimal residual solver. A long duct example with an analytical solution validates the accuracy of the proposed method, and an automotive passenger compartment subjecting to impedance boundary conditions illustrates that the computing time of the proposed method is one order of magnitude less than the conventional method. This work presents an easily implementable and efficient tool to investigate acoustic sensitivity with respect to impedance, showing great potential in the application of automotive acoustics.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3