Tribological Characterization of Hypereutectic Al–25Si Alloy Under Dry and Lubricated Sliding Conditions

Author:

Kumar Parveen1,Wani M. F.2

Affiliation:

1. Tribology Laboratory, Department of Mechanical Engineering, National Institute of Technology, Srinagar 190006, Jammu and Kashmir, India

2. Tribology Laboratory, Department of Mechanical Engineering, National Institute of Technology, Srinagar 190006, Jammu and Kashmir, India e-mail:

Abstract

Friction and wear properties of hypereutectic Al–25Si alloy were studied under dry and lubricated sliding conditions. Hypereutectic Al–25Si alloys were prepared by rapid solidification process (RSP) under the T6 condition. Experimental studies were conducted using a ball on disk type tribometer. The effect of the sliding distance and normal load on the friction and wear were investigated. The coefficient of friction (COF) remained stable with an increase in the sliding distance (250–1500 m) and decreased with an increase in the normal load (10–50 N), whereas the wear rate decreased with an increase in the sliding distance, and increased with the increase in the normal load up to 40 N and then attained a steady-state value under dry and lubricated sliding conditions. The improvements in COF and wear rate were mainly attributed to the morphology, size, and distribution of hypereutectic Si particles due to its fabrication process. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), optical microscopy, and three-dimensional (3D)-surface profilometer were used for characterization of the wear tracks. The dominant wear mechanisms for a hypereutectic Al–25Si alloy were adhesive wear, abrasive wear, and plastic deformation.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3