Oil-Based Drilling Fluid's Cuttings Bed Removal Properties for Deviated Wellbores

Author:

Ytrehus Jan David1,Lund Bjørnar1,Taghipour Ali1,Carazza Luca2,Gyland Knud Richard3,Saasen Arild4

Affiliation:

1. SINTEF, Trondheim 7345, Norway

2. Aker BP, Stavanger 4020, Norway

3. Schlumberger, MI-SWACO, Stavanger 4019, Norway

4. Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger 4036, Norway

Abstract

Abstract Results from cuttings transport tests in the laboratory using different field-applied oil-based drilling fluids with similar weight and varying viscosities are presented in this paper. The fluids are designed for highly deviated wells, and the cuttings transport performance at relevant wellbore inclinations was investigated. The experiments have been performed in a flow loop that consists of a 10-m-long test section with 50.4 mm (2″) diameter freely rotating steel drill string inside a 100-mm (≈4″) diameter wellbore made of cement. Sand particles were injected while circulating the drilling fluid through the test section. Experiments were performed at three wellbore inclinations: 48, 60, and 90 deg from vertical. The applied flow loop dimensions are designed so that the results are scalable to field applications; especially for the 12 ¼″and 8 ½″ sections. The selected setup provides correct shear rate ranges and similar Reynolds numbers to the field application when the same fluids are applied. Results show that hole cleaning abilities of the tested fluids vary significantly with well angle, drill string rotation, and flowrate. Results support field experience showing that low viscous fluids are more efficient than viscous fluids at higher flowrates and low drill string rotation. As well as per field experience, more viscous fluids are efficient in combination with high drill string rotation rates. The results show the effect of cuttings transport efficiency as a function of hydraulic frictional pressure drop, demonstrating methods to achieve a more optimal hydraulic design in the tested conditions. The key findings have direct relevance to drilling operations.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3