Particle Removal From Sandbed Deposits in Horizontal Annuli Using Viscoelastic Fluids

Author:

Bizhani M..1,Kuru E..1

Affiliation:

1. University of Alberta

Abstract

Summary This paper presents results of an experimental study on how fluid viscoelastic properties would influence the particle removal from the sandbed deposited in horizontal annuli. Water and two different viscoelastic fluids were used for bed-erosion experiments. The particle-image-velocimetry (PIV) technique was used to measure the local fluid velocity at the fluid/sandbed interface, allowing for accurate estimation of the fluid-drag forces and the turbulence stresses. It was found that polymer fluids needed to exert higher level drag forces (than those of water) on the sandbed to start movement of the particles. Results have also shown that, at the critical flow rate of bed erosion, the polymer fluids yielded higher local fluid velocities and turbulent stresses than those of water. Moreover, the local velocity measurements by means of the PIV technique and the resultant bed-shear-stress calculations indicated that enhancing polymer concentration under the constant flow rate should also enhance the drag forces acting on the sandbed. However, these improved fluid hydrodynamic forces did not result in any improvement in the bed erosion. Therefore, the mechanism causing the delay in the bed erosion by polymer additives could not be explained by any decrease in the local fluid velocity and the turbulence. The primary reason for the delayed bed erosion by the polymer fluids was suggested to be linked to their viscoelastic properties. Two possible mechanisms arising from the elastic properties of the polymer fluids that hinder bed erosion were further discussed in the paper. The stress tensor of the viscoelastic-fluid flow was analyzed to determine the normal stress differences and the resultant normal fluid force acting on the particles at the fluid/sandbed interface. The normal force induced by the normal stress differences of the viscoelastic fluid was identified as one of the possible causes of the delayed bed erosion by these types of fluids.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3