Gender Differences in Cervical Spine Motions and Loads With Head Supported Mass Using Finite Element Models

Author:

Purushothaman Yuvaraj1,Yoganandan Narayan23

Affiliation:

1. Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI 53226

2. Department of Neurosurgery, Medical College of Wisconsin , 8701 Watertown Plank Road, Milwaukee, WI 53226 ; , Milwaukee, WI 53295

3. VA Medical Center , 8701 Watertown Plank Road, Milwaukee, WI 53226 ; , Milwaukee, WI 53295

Abstract

Abstract While many studies have been conducted to delineate the role of gender in rear impact via experiments, clinical investigations, modeling, and epidemiological research, the effect of the added head mass on segmental motions has received less attention. The objective of the study is to determine the role of the head supported mass on the segmental motions and loads on the cervical spinal column from rear impact loading. The study used finite element modeling. The model was subjected to mesh convergence studies. It was validated with human cadaver experimental data by applying the rear impact acceleration pulse to the base of the spine. At all levels of the subaxial spinal column, a comparison was made between male and female spines and with and without the use of an army combat helmet. For this purpose, segmental motions, forces, and bending moments were used as biomechanical parameters. Results showed that female spines responded with increased motions than males, and the presence of a helmet increased motions and loads in males and female spines at all levels. Numerical data are given. Head supported mass affects spine responses at all levels. The present computational modeling study, from one geometry for the male spine and one geometry for the female spine (limitations are addressed in the paper), provided insights into the mechanisms of the internal load transfer with the presence of head supported mass, prevalent in certain civilian occupations and active-duty Service members in the military.

Funder

Congressionally Directed Medical Research Programs

National Center for Advancing Translational Sciences

Publisher

ASME International

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3