The Dynamics of Two-Dimensional Buoyancy Driven Convection in a Horizontal Rotating Cylinder

Author:

Hasan Nadeem1,Sanghi Sanjeev1

Affiliation:

1. Dept. of Applied Mechanics, IIT Delhi, New Delhi, India-110016

Abstract

The present study involves a numerical investigation of buoyancy induced two-dimensional fluid motion in a horizontal, circular, steadily rotating cylinder whose wall is subjected to a periodic distribution of temperature. The axis of rotation is perpendicular to gravity. The governing equations of mass, momentum and energy, for a frame rotating with the enclosure, subject to Boussinesq approximation, have been solved using the Finite Difference Method on a Cartesian colocated grid utilizing a semi-implicit pressure correction approach. The problem is characterized by four dimensionless parameters: (1) Gravitational Rayleigh number Rag; (2) Rotational Rayleigh number RaΩ; (3) Taylor number Ta; and (4) Prandtl number Pr. The investigations have been carried out for a fixed Pr=0.71 and a fixed Rag=105 while RaΩ is varied from 102 to 107. From the practical point of view, RaΩ and Ta are not independent for a given fluid and size of the enclosure. Thus they are varied simultaneously. Further, an observer attached to the rotating cylinder, is stationary while the “g” vector rotates resulting in profound changes in the flow structure and even the flow direction at low enough flow rates RaΩ<105 with phase “ϕg” of the “g” vector. For RaΩ⩾105, the global spatial structure of the flow is characterized by two counter-rotating rolls in the rotating frame while the flow structure does not alter significantly with the phase of the rotating “g” vector. The frequency of oscillation of Nusselt number over the heated portion of the cylinder wall is found to be very close to the rotation frequency of the cylinder for RaΩ⩽105 whereas multiple frequencies are found to exist for RaΩ>105. The time mean Nusselt number for the heated portion of the wall undergoes a nonmonotonic variation with RaΩ, depending upon the relative magnitudes of the different body forces involved.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3