Analysis of Flow Structures and Global Parameters across a Heated Square Cylinder in Forced and Mixed Convection

Author:

Ali RashidORCID,Hasan Nadeem

Abstract

In the present study, numerical simulations are performed to identify the role of Reynolds number (Re), Richardson number (Ri) and free-stream orientations (α) on flow structures, aerodynamic parameters and heat transfer characteristics for the conditions (20 ≤ Re ≤ 120, 0° ≤ α ≤ 90° and 0 ≤ Ri ≤ 1.6). Prandtl number (Pr) and cylinder orientation (ϕ) are kept fixed at 0.71 and 0°. The Oberbeck–Boussinesq approximation is used to account for buoyancy effects. The governing equations of continuity, momentum and energy are discretized on a colocated body-fitted grid by employing a finite difference method. A viscous implicit pressure correction scheme is employed to advance the discrete solution in time. Contour maps of mean/steady drag coefficient and Nusselt number on (α-Ri) plane are plotted for 20 ≤ Re ≤ 120. From these contour maps, it is possible to identify the ranges of parameters (α, Ri) that can yield a relatively high mean/steady heat transfer rate accompanied by relatively low values of mean/steady drag coefficient. For [70° ≤ α ≤ 90°, 0 ≤ Ri ≤ 1.6], such a scenario is possible for any Re ∈ [20, 120]. The Strouhal number is observed to be maximum for Re = 120 at α = 45° and Ri = 1.2. Mean or steady coefficient of lift for any free-stream orientation (α ≠ 0°) is found to be highest at Re = 20 and Ri = 1.6. Sensitivity of (CD)Ri = 0.0 to α is observed to be minimum for Re = 20 and maximum for Re = 120. Sensitivity of the ratio CD(Ri,α)/CD(0,α) to Re is observed to be lower for unsteady flows than for steady flows, and it decreases with an increase in Re at a fixed value of Ri. Mean Nusselt number (Nu) in the forced flow regime increases significantly with an increase in Re at a fixed α. The Nusselt number is observed to be more sensitive to Ri for steady flows than for unsteady flows. The percentage increase in the ratio Nu(Ri,α)/Nu(0,α) for the entire range of Re is found to be 14.07%, 14.13%, 11.74% and 10.62% at α = 30°, 45°, 60° and 90°. At a fixed Ri, the Nusselt number ratio is found to decrease with an increase in Re for the entire range of α except for α = 90°. It is observed that the rate of heat transfer from the faces of the cylinder increases with an increase in Re for the entire ranges of α and Ri.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3