Particle-Image Velocimetry Measurements of Film Cooling in an Adverse Pressure Gradient Flow

Author:

Jessen Wilhelm1,Konopka Martin1,Schroeder Wolfgang1

Affiliation:

1. Institute of Aerodynamics, RWTH Aachen University, Wuellnerstraße 5a, 52062 Aachen, Germany

Abstract

The turbulent flow field of a film cooling flow is investigated using the particle-image velocimetry technique. Cooling jets are injected from a multirow hole configuration into a turbulent boundary layer flow of a flat plate in the presence of a zero and an adverse pressure gradient. The investigations focus on full-coverage film cooling. Therefore, the film cooling configuration consists of three staggered rows of holes with a lateral spacing of p/D=3 and a streamwise row distance of l/D=6. The inclined cooling holes feature a fan-shaped exit geometry with lateral and streamwise expansions. Jets of air and CO2 are injected separately at different blowing ratios into a boundary layer to examine the effects of the density ratio between coolant and mainstream on the mixing behavior and consequently, the cooling efficiency. For the zero pressure gradient case, the measurement results indicate the different nature of the mixing process between the jets and the crossflow after the first, second, and third row. The mainstream velocity distributions evidence the growth of the boundary layer thickness at increasing row number. The interaction between the undisturbed boundary layer and first two rows leads to maximum values of turbulent kinetic energy. The presence of an adverse pressure gradient in the mainstream clearly intensifies the growth of the boundary layer thickness and increases the velocity fluctuations in the upper mixing zone. The measurements considering an increased density ratio show higher turbulence intensities in the shear zone between the jets and the main flow, leading to a more pronounced mixing in this area. The results of the experimental measurements are used to validate numerical findings from a large-eddy simulation. This comparison shows a very good agreement for mean velocity distributions and velocity fluctuations.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3