Analysis of Instantaneous Turbulent Velocity Vector and Temperature Profiles in Transitional Rough Channel Flow

Author:

Afzal Noor1

Affiliation:

1. Faculty of Engineering, Aligarh Muslim University, Aligarh 202002, India

Abstract

The instantaneous velocity vector and instantaneous temperature in a turbulent flow in a transitionally rough channel have been analyzed from unsteady Navier–Stokes equations and unsteady thermal energy equation for large Reynolds numbers. The inner and outer layers asymptotic expansions for the instantaneous velocity vector and instantaneous temperature have been matched in the overlap region by the Izakson–Millikan–Kolmogorov hypothesis. The higher order effects and implications of the intermediate (or meso) layer are analyzed for the instantaneous velocity vector and instantaneous temperature. Uniformly valid solutions for instantaneous velocity vector have been decomposed into the mean velocity vector, and fluctuations in velocity vector, as well as the instantaneous temperature, have been decomposed into mean temperature and fluctuations in temperature. It is shown in the present work that if the mean velocity vector in the work of Afzal (1976, “Millikan Argument at Moderately Large Reynolds Numbers,” Phys. Fluids, 16, pp. 600–602) is replaced by instantaneous velocity vector, we get the results of Lundgren (2007, “Asymptotic Analysis of the Constant Pressure Turbulent Boundary Layer,” Phys. Fluids, 19, pp. 055105) for instantaneous velocity vector. The comparison of the predictions for momentum and thermal mesolayers is supported by direct numerical simulation (DNS) and experimental data.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference44 articles.

1. Instantaneous Velocity Profile Measurements in a Turbulent Boundary Layer;Robinson;Chem. Eng. Commun.

2. Similarity of Instantaneous and Filtered Velocity in the Near Wall Region of Zero Pressure Gradient Boundary Layer;Nakayama;Fluid Dyn. Res.

3. Asymptotic Analysis of the Constant Pressure Turbulent Boundary Layer;Lundgren;Phys. Fluids

4. Millikan Argument at Moderately Large Reynolds Numbers;Afzal;Phys. Fluids

5. Analysis of Turbulent Pipe and Channel Flows at Moderately Large Reynolds Number;Afzal;J. Fluid Mech.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3