Effect of Hydrogen Enrichment on Transfer Matrices of Fully and Technically Premixed Swirled Flames

Author:

Blondé Audrey1,Schuermans Bruno1,Pandey Khushboo1,Noiray Nicolas1

Affiliation:

1. CAPS Laboratory, Department of Mechanical and Process Engineering, ETH Zürich , Zürich 8092, Switzerland

Abstract

Abstract Knowledge of flame responses to acoustic perturbations is of utmost importance to predict thermoacoustic instabilities in gas turbine combustors. However, measuring transfer functions linking acoustic quantities upstream and downstream of flames are very challenging in practical systems and these measurements can significantly deviate from state-of-the-art models. Moreover, there is a lack of studies investigating the effect of hydrogen enrichment on the response of natural gas (NG) flames. In this work, measurements of flame transfer matrices (FTMs) of turbulent H2/NG flames in an atmospheric combustor featuring an axial swirler burner have been performed, allowing us to unravel the transition between FTM in fully premixed (FP) and in technically premixed (TP) conditions. Furthermore, imaging of OH* chemiluminescence and OH-planar laser induced fluorescence are obtained for characterizing the topology of the flame for varying H2 fraction and mixing conditions. Transfer matrices are measured using the multimicrophone method for H2 fractions ranging from 12% to 43% in power. Afterward, the flame transfer functions (FTFs), which linearly relate the coherent fluctuations of the heat release rate to the acoustic velocity oscillations, are obtained from the FTM by using the Rankine–Hugoniot jump conditions across the flame. Using the OH* chemiluminescence intensity as a surrogate for the heat release rate, the FTF based on this optical measurement is also extracted and compared to the one exclusively obtained with the multimicrophone method. As expected, the two different methods are in very good agreement for the FP case and significantly differ for the TP case. Indeed, chemiluminescence fluctuations cannot be directly linked to heat release rate fluctuations when the acoustic forcing induces equivalence ratio fluctuations at the flame, making the optical method unusable for TP configurations. We also show that the two methods agree in the high end of the explored excitation frequency range and we provide an explanation to this intriguing finding. Moreover, we investigate the sensitivity of the FTM measurement to the estimate of the speed of sound in the rig in FP conditions. Finally, the measured FTFs are fitted with FTF models based on multiple distributed time delays. This allows us to explain the frequency dependence and the hydrogen fraction dependence of the gain and the phase in FP and TP conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference30 articles.

1. Toward Decarbonized Power Generation With Gas Turbines by Using Sequential Combustion for Burning Hydrogen;ASME J. Eng. Gas Turbines Power,2019

2. ETN Global, 2020, “ Hydrogen Gas Turbines, the Path Towards a Zero-Carbon Gas Turbine,” ETN Global, Brussels, Belgium, accessed December 10, 2022, https://etn.global/wp-content/uploads/2020/02/ETN-Hydrogen-Gas-Turbines-report.pdf

3. Sustainable Aviation–Hydrogen Is the Future;Sustainability,2022

4. Burning Velocities of Hydrogen-Air Mixtures;Combust. Flame,1993

5. Transient and Limit Cycle Combustion Dynamics Analysis of Turbulent Premixed Swirling Flames;J. Fluid Mech.,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3