Generative Design by Embedding Topology Optimization into Conditional Generative Adversarial Network

Author:

Wang Zhichao1,Melkote Shreyes1,Rosen David W.23

Affiliation:

1. Georgia Institute of Technology School of Mechanical Engineering, , Atlanta, GA 30332

2. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332;

3. Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16Singapore 138632

Abstract

Abstract Generative design (GD) techniques have been proposed to generate numerous designs at early design stages for ideation and exploration purposes. Previous research on GD using deep neural networks required tedious iterations between the neural network and design optimization, as well as post-processing to generate functional designs. Additionally, design constraints such as volume fraction could not be enforced. In this paper, a two-stage non-iterative formulation is proposed to overcome these limitations. In the first stage, a conditional generative adversarial network (cGAN) is utilized to control design parameters. In the second stage, topology optimization (TO) is embedded into cGAN (cGAN + TO) to ensure that desired functionality is achieved. Tests on different combinations of loss terms and different parameter settings within topology optimization demonstrated the diversity of generated designs. Further study showed that cGAN + TO can be extended to different load and boundary conditions by modifying these parameters in the second stage of training without having to retrain the first stage. Results demonstrate that GD can be realized efficiently and robustly by cGAN+TO.

Funder

Directorate for Engineering

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3