Manufacturing Process Classification Based on Distance Rotationally Invariant Convolutions

Author:

Wang Zhichao1,Rosen David23

Affiliation:

1. Georgia Institute of Technology School of Mechanical Engineering, , Atlanta, GA 30332

2. Georgia Institute of Technology School of Mechanical Engineering, , Atlanta, GA 30332 ; , Singapore 138632

3. Institute for High Performance Computing and SIMTech, A*STAR School of Mechanical Engineering, , Atlanta, GA 30332 ; , Singapore 138632

Abstract

Abstract Given a part design, the task of manufacturing process classification identifies an appropriate manufacturing process to fabricate it. Our previous research proposed a large dataset for manufacturing process classification and achieved accurate classification results based on a combination of a convolutional neural network (CNN) and the heat kernel signature for triangle meshes. In this paper, we constructed a classification method based on rotation invariant shape descriptors and a neural network, and it achieved better accuracy than all previous methods. This method uses a point cloud part representation, in contrast to the triangle mesh representation used in our previous work. The first step extracted rotation invariant features consisting of a set of distances between points in the point cloud. Then, the extracted shape descriptors were fed into a CNN for the classification of manufacturing processes. In addition, we provide two visualization methods for interpreting the intermediate layers of the neural network. Last, the performance of the method was tested on some ambiguous examples and their performances were consistent with expectations. In this paper, we have considered only shape information, while non-shape information like materials and tolerances were ignored. Additionally, only parts that require one manufacturing process were considered in this research. Our work demonstrates that part shape attributes alone are adequate for discriminating between different manufacturing processes considered.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3