Efficient Particle Swarm Optimization of Well Placement to Enhance Oil Recovery Using a Novel Streamline-Based Objective Function

Author:

Siavashi Majid1,Tehrani Mohammad Rasoul2,Nakhaee Ali2

Affiliation:

1. Applied Multi-Phase Fluid Dynamics Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran e-mail:

2. Institute of Petroleum Engineering, University of Tehran, P.O. Box 14395-515, Tehran, Iran e-mail:

Abstract

One of the main reservoir development plans is to find optimal locations for drilling new wells in order to optimize cumulative oil recovery. Reservoir simulation is a necessary tool to study different configurations of well locations to investigate the future of the reservoir and determine the optimal places for well drilling. Conventional well-known numerical methods require modern hardware for the simulation and optimization of large reservoirs. Simulation of such heterogeneous reservoirs with complex geological structures with the streamline-based simulation method is more efficient than the common simulation techniques. Also, this method by calculation of a new parameter called “time-of-flight” (TOF) offers a very useful tool to engineers. In the present study, TOF and distribution of streamlines are used to define a novel function which can be used as the objective function in an optimization problem to determine the optimal locations of injectors and producers in waterflooding projects. This new function which is called “well location assessment based on TOF” (WATOF) has this advantage that can be computed without full time simulation, in contrast with the cumulative oil production (COP) function. WATOF is employed for optimal well placement using the particle swarm optimization (PSO) approach, and its results are compared with those of the same problem with COP function, which leads to satisfactory outcomes. Then, WATOF function is used in a hybrid approach to initialize PSO algorithm to maximize COP in order to find optimal locations of water injectors and oil producers. This method is tested and validated in different 2D problems, and finally, the 3D heterogeneous SPE-10 reservoir model is considered to search locations of wells. By using the new objective function and employing the hybrid method with the streamline simulator, optimal well placement projects can be improved remarkably.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3