Experimental Investigation of Conjugate Heat Transfer in a Rib-Roughened Trailing Edge Channel With Crossing Jets

Author:

Coletti Filippo1,Scialanga Manfredi1,Arts Tony1

Affiliation:

1. Department of Turbomachinery and Propulsion, von Karman Institute for Fluid Dynamics, 1640 Rhode-St-Genèse, Belgium

Abstract

The present contribution is devoted to the experimental study of the conjugate heat transfer in a turbine blade cooling cavity located near the trailing edge. The cooling scheme is characterized by a trapezoidal cross-section, one rib-roughened wall, and slots along two opposite walls. The Reynolds number, defined at the inlet of the test section, is set at 67,500 for all the experiments. The values of all the important nondimensional parameters characterizing the experiment, including the solid-to-fluid conductivity ratio, are engine-representative. Uniform heat flux is imposed along the outer side of the rib-roughened wall. The measurements are performed using three different ribbed walls, with thermal conductivities ranging from 1 W m−1 K−1 to 18 W m−1 K−1. Highly resolved distributions of nondimensional temperature and Nusselt number over the rib-roughened wall are obtained by means of infrared thermography and finite element analysis. The impact of the conduction through the wall on the thermal performance is demonstrated by comparison with purely convective results, previously published by the authors on the same configuration.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3