Influence of Surface Heat Flux Ratio on Heat Transfer Augmentation in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs

Author:

Han J. C.1,Zhang Y. M.1,Lee C. P.2

Affiliation:

1. Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843

2. General Electric Company, Cincinnati, OH 45215

Abstract

The effect of wall heat flux ratio on the local heat transfer augmentation in a square channel with two opposite in-line ribbed walls was investigated for Reynolds numbers from 15,000 to 80,000. The square channel composed of ten isolated copper sections has a length-to-hydraulic diameter ratio (L/D) of 20. The rib height-to-hydraulic diameter ratio (e/D) is 0.0625 and the rib pitch-to-height ratio (P/e) equals 10. Six ribbed side to smooth side wall heat flux ratios (Case 1—q″r1/q″s = q″r2/q″s = 1; Case 2—q″r1/q″s = q″r2/q″s = 3; Case 3—q″r1/q″s = q″r2/q″s = 6; Case 4—q″r1/q″s = 6 and q″r2/q″s = 4; Case 5—q″r1/q″s = q″r2/q″s = ∞; Case 6—q″r1/q″s = ∞ and q″r2/q″s = 0) were studied for four rib orientations (90 deg rib, 60 deg parallel rib, 60 deg crossed rib, and 60 deg V-shaped rib). The results show that the ribbed side wall heat transfer augmentation increases with increasing ribbed side to smooth side wall heat flux ratios, but the reverse is true for the smooth side wall heat transfer augmentation. The average heat transfer augmentation of the ribbed side and smooth side wall decreases slightly with increasing wall heat flux ratios. Two ribbed side wall heating (Case 5—q″r1/q″s = q″r2/q″s = ∞) provides a higher ribbed side wall heat transfer augmentation than the four-wall uniform heating (Case 1—q″r1/q″s = q″r2/q″s = 1). The effect of wall heat flux ratio reduces with increasing Reynolds numbers. The results also indicate that the 60 deg V-shaped rib and 60 deg parallel rib perform better than the 60 deg crossed rib and 90 deg rib, regardless of wall heat flux ratio and Reynolds number.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3