Effect of Residual Stress in Surface Layer on Contact Deformation of Elastic-Plastic Layered Media

Author:

Ye N.1,Komvopoulos K.1

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Abstract

The effect of residual stress in the surface layer on the deformation of elastic-plastic layered media due to indentation and sliding contact loading and unloading was analyzed with the finite element method. A three-dimensional finite element model of a rigid sphere interacting with a deformable layered medium was developed, and its accuracy was evaluated by contrasting finite element results with analytical solutions for the surface stresses of an elastic homogeneous half-space subjected to normal and friction surface traction. Deformation of the layered medium is interpreted in terms of the dependence of the von Mises equivalent stress, first principal stress, and equivalent plastic strain on the magnitudes of residual stress and coefficient of friction. The effect of residual stress on the propensity for yielding and cracking in the layered medium is discussed in the context of results for the maximum Mises and tensile stresses and the evolution of plasticity in the subsurface. It is shown that the optimum residual stress in the surface layer depends on the type of contact loading (indentation or sliding), coefficient of friction, and dominant deformation mode in the layer (i.e., plastic deformation or cracking).

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3