Optimization of Composite Cylindrical Shell Structures for Hydrostatic Pressure Loading

Author:

Matos Helio1,Chaudhary Birendra1,Ngwa Akongnwi Nfor1

Affiliation:

1. Dynamic Photomechanics Laboratory, Mechanical, Industrial, and Systems Engineering Department, University of Rhode Island , Kingston, RI 02881

Abstract

Abstract Deep-sea structures will collapse/implode under hydrostatic pressure when the structure dives below an instability threshold, leading to catastrophic failure. To better understand how the layup angle of composite cylindrical shells influences this instability threshold, this work explores how composite cylinders can achieve the highest (optimum) critical collapse pressure under hydrostatic loading conditions. To perform this analysis, a closed-form analytical cylinder buckling solution developed by previous work is used in conjunction with different cylindrical geometrical configurations and composite properties for glass, carbon, and intraply hybrid composite properties for woven and unidirectional structures. The results show that a composite structure's optimum layup configuration is unique to the structure's geometry and material system. However, general trends are observed for these different systems, such as how symmetric and asymmetric constructions place the axial-resistant layers near the neutral plane of the composite system. In addition, both constructions need an increase in shear-resistance layers as the L/D ratio decreases regardless of the material system. Lastly, the analytical approach presented in this work can be used to accurately determine the optimum layup angle for thin composite cylindrical structures that are subjected to external hydrostatic pressure.

Funder

Office of Naval Research

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference36 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3