Underwater Implosion and Energy Mitigation of Hybrid Glass-Carbon Composite Shells

Author:

Ngwa Akongnwi Nfor1ORCID,Chaudhary Birendra1ORCID,Matos Helio1ORCID,Shukla Arun1

Affiliation:

1. Dynamic Photo-Mechanics Laboratory, Department of Mechanical, Industrial, and Systems Engineering, University of Rhode Island, 94 Upper College Road, Kingston, RI 02881, USA

Abstract

Experiments were conducted to investigate the dynamic buckling behavior of underwater hybrid composite tubes. The study focused on roll-wrapped hybrid layered glass-carbon fiber epoxy composite shells with a six-layer quasi-isotropic layup configuration. In addition to control specimens consisting of fully glass fiber-reinforced polymer and carbon fiber-reinforced polymer, four different hybrid layup patterns were examined. These specimens fitted with custom endcaps were placed inside a 7-kiloliter pressure vessel and subjected to increasing hydrostatic pressure until dynamic implosion occurred. High-speed cameras captured the failure event, and the resulting images were analyzed using Digital Image Correlation (DIC) techniques to obtain full-field displacement data. Additionally, tourmaline pressure transducers positioned around the specimens recorded local dynamic pressure histories. The results revealed that the contribution of each ply location varied in the overall failure behavior of the structures. The thickness of the internal plies played a dominant role in enhancing the structural performance, while the stiffness of the outer plies greatly influenced the bending stiffness. The energy released during the collapse was highly dependent on the failure mechanism of the internal plies. Specifically, for the considered geometries, tubes with glass fiber internal plies exhibited significantly lower energy emissions compared to carbon fiber inner plies.

Funder

Office of Naval Research

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3