Vorticity Shedding and Acoustic Resonance Excitation of a Square Tube Array: Effect of Flow Approach Angle

Author:

Mohany Atef1,Alziadeh Mohammed1,Hassan Marwan2

Affiliation:

1. Fluid-Structure Interaction & Noise Control Laboratory, Faculty of Engineering and Applied Science, Ontario Tech University , Oshawa, ON L1H 7K4, Canada

2. Flow-Induced Vibrations Laboratory, School of Engineering, University of Guelph , Guelph, ON N1G 2W1, Canada

Abstract

Abstract This paper presents an experimental investigation of the vorticity shedding and the susceptibility of acoustic resonance excitation for a square tube array with an intermediate tube spacing (i.e., pitch-to-diameter ratio (P/D) of 1.73). The tube array could be rotated about an axis normal to the flow direction so that the effect of the flow approach angle could be investigated. Various Strouhal periodicities (St) were detected, and their strength and value were dependent on the position measured within the tube bundle and the tube bundle's angular orientation. However, not all of the Strouhal periodicities measured caused self-excitation of acoustic resonance. This work illustrates the importance of considering the flow approach angle in the heat exchanger design phase to avoid the undesirable effects of acoustic resonance excitation during operation.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3