Simulation and Analysis of High-Speed Droplet Spray Dynamics

Author:

Shi H.1,Kleinstreuer C.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910

Abstract

An experimentally validated computer simulation model has been developed for the analysis of gas-phase and droplet characteristics of isothermal sprays generated by pressure jet atomizers. Employing a coupled Euler-Lagrange approach for the gas-droplet flow, secondary droplet breakup (based on the ETAB model), was assumed to be dominant and the k-ε model was selected for simulating the gas flow. Specifically, transient spray formation in terms of turbulent gas flow as well as droplet velocities and size distributions are provided for different back pressures. Clearly, two-way coupling of the phases is important because of the impact of significant gas entrainment, droplet momentum transfer, and turbulent dispersion. Several spray phenomena are discussed in light of low back-pressure (1atm) and high back-pressure (30atm) environments. At low back-pressure, sprays have long thin geometric features and penetrate faster and deeper than at high back-pressures because of the measurable change in air density and hence drag force. Away from the nozzle exit under relatively high back pressures, there is no distinct droplet size difference between peripheral and core regions because of the high droplet Weber numbers, leading to very small droplets which move randomly. In contrast to transient spray developments, under steady-state conditions droplets are subject to smaller drag forces due to the fully-developed gas entrainment velocities which reduce gas-liquid slip. Turbulent dispersion influences droplet trajectories significantly because of the impact of random gas-phase fluctuations.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3