Improved Model of an Intermediate Point Enthalpy Control System for Enhancing Boiler Efficiency

Author:

Yang Zihao1,Zhang Yanping1,Gao Wei1

Affiliation:

1. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China e-mail:

Abstract

Control quality of an once-through boiler’s water-fuel ratio (WFR) and main-steam temperature are heavily influenced by the control quality of the once-through boiler’s intermediate point enthalpy (IPE), and it is also related to the economic and stable operation of the a once-through boiler. In order to control the IPE in a better way and to increase boiler efficiency, an improved model of IPE control system was built in this paper, matlab/simulink is used to build the IPE control system model based on a 600 MW supercritical unit, and the mechanism model of the control object is built in the same time. The feedforward of the feed-water temperature is brought to this model to increase the control rate. The control method of amendments to the amount of coal and the control method of amendments to the amount of feed-water are combined by the means of fuzzy control to solve the problem of the contradiction of the responding speed of the IPE and the separation interface’s stability of the steam-water separator. The simulation results show that the improved control method has better control effect and higher boiler efficiency was obtained as well.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference26 articles.

1. Temperature Control Via Affine Nonlinear Systems for Intermediate Point of Supercritical Once-Through Boiler Units;Math. Probl. Eng.,2014

2. Feed-Water Control Scheme Design of Two Different Structure Double-Hearth Benson Once-Through Boilers and Its Application,2006

3. Two Kind of Typical Coordinated Control Systems in Ultra-Supercritical Units;Electr. Power,2011

4. A Control Method Based on Gain-Switching for Intermediate Point Temperature of Supercritical Pressure Boiler;Proc. CSEE,2014

5. A Dynamic Model Used for Controller Design of a Coal Fired Once-Through Boiler-Turbine Unit;Energy,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heat flux and friction losses effects on natural circulation package boilers;Thermal Science and Engineering Progress;2020-12

2. A Note on Model Selection Based on the Percentage of Accuracy-Precision;Journal of Energy Resources Technology;2018-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3