A Strongly Coupled Fluid Structure Interaction Solution for Transient Soft Elastohydrodynamic Lubrication Problems in Reciprocating Rod Seals Based on a Combined Moving Mesh Method

Author:

Gao Haiping1,Li Baoren1,Fu Xiaoyun1,Yang Gang2

Affiliation:

1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China e-mail:

Abstract

Soft elastohydrodynamic lubrication (EHL) problems widely exist in hydraulic reciprocating rod seals and pose great challenges because of high nonlinearity and strong coupling effects, especially when the EHL problems are of high dimensions. In this paper, a strongly coupled fluid structure interaction (FSI) model is proposed to solve the transient soft EHL problems in U-cup hydraulic reciprocating rod seals. The Navier–Stokes equations, rather than the Reynolds equation, are employed to govern the whole fluid field in the soft EHL problems, with the nonlinearity of the solid taken into consideration. The governing equations of the fluid and solid fields are combined into one equation system and solved monolithically. To determine the displacements of nodes of the fluid field, a new moving mesh method based on the combination of the Laplace equation and the leader–follower methods is put forward. At last, the proposed FSI model runs successfully with the moving mesh method, and the boundaries of the hydrodynamic lubrication zones and the hydrostatic zones are formed automatically and change dynamically during the coupling process. The results are as follows: The soft EHL problems show typical characteristics, like the constriction effects of the lubricating films, and the law of dynamic development of the lubricating films and the fluid pressures is revealed. The minimum stroke lengths needed to generate complete lubricating films vary with the rod speeds and movement directions, so the design of the rod seals should be paid close attention to, in particular the rod seals of short stroke lengths. Furthermore, along with the dynamic development processes of the fluid pressures during the instroke of U-cup seals, the lubricating film humps expand and locate between the fluid pressure abrupt points and the outlet zones. After the U-cup seals reach the steady-states, the fluid abrupt points disappear and no changes of the film humps are observed. Theoretically, the proposed method can be popularized to solve similar soft EHL problems.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3