A Novel Generalized Approach for Real-Time Tool Condition Monitoring

Author:

Hassan Mahmoud1,Sadek Ahmad2,Attia M. H.3,Thomson Vincent1

Affiliation:

1. Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada e-mail:

2. Mem. ASME Aerospace Structures, Materials and Manufacturing, National Research Council Canada, Montreal, QC H3T 2B2, Canada e-mail:

3. Fellow ASME Aerospace Structures, Materials and Manufacturing, National Research Council Canada, Montreal, QC H3T 2B2, Canada; Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada e-mails: ;

Abstract

In high-speed cutting processes, late replacement of defective tools may lead to machine breakdowns and badly affect the product quality, which subsequently lead to scrap parts and high process costs. Accurate tool condition detection is essential to achieve high level of competitiveness via increasing process productivity and standardizing the quality of the produced parts. Therefore, tool condition monitoring (TCM) systems have been widely emphasized as an important principle to achieve these industrial demands. Several studies for TCM were carried out to capture tool failure using complex conventional and artificial intelligence (AI) techniques. However, these studies suffer from the absence of standardization and generalization. Hence, this paper presents a robust and reliable processing technique for the cutting process signals to extract generalized features in time and frequency domains. The proposed technique masks the effects of the cutting conditions on the extracted features and accentuates the tool condition effect. Characterization and statistical analysis of the processed features were performed to examine their sensitivity to the tool condition. The results revealed the processing technique capability to separate the features extracted from the spindle motor current signals into two mutually exclusive clusters according to their tool condition. The statistical analysis results were employed to optimize the tool condition detection approach using linear discrimination analysis (LDA) model. The results indicate the capability of the processing technique to minimize the system learning effort and to detect tool wear above the threshold level with accuracy above 90%.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference28 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3