An adaptive procedure for tool life prediction in face milling

Author:

Zhang D D1

Affiliation:

1. Department of System Engineering of Engineering Technology, Beihang University, Beijing 100191, People’s Republic of China.

Abstract

Accurate prediction of tool life is essential to guarantee surface quality and economics of cutting operations in face milling. This article presents a procedure for tool life prediction through in-process adaptation of tool wear rate based on indirect measures. The procedure effectively accounts for the uncertainty of tool wear progress owing to the complexity of the machining process. First, sensor fusion of spindle motor current AC and DC portions is taken to estimate the actual tool wear through relevance vector machine. Then, a tool life prediction model relating flank wear with cutting time is proposed for tracking the progress of tool wear under certain cutting settings. Further, a recursive least square algorithm is developed to update the parameters of the tool life prediction model by considering the error between the predicted tool wear and the estimated tool wear. Finally, the updated model capturing the uncertainty of tool wear progress is used to predict tool life in face milling. Tool life experiments validate that the adaptive procedure can quickly track the progress of tool wear, and make more accurate prediction of tool life compared with the procedure with constant model parameters.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of cutting tool life prediction through flank wear monitoring;International Journal of Quality & Reliability Management;2024-05-31

2. Data-driven segmentation of long term condition monitoring data in the presence of heavy-tailed distributed noise with finite-variance;Mechanical Systems and Signal Processing;2023-12

3. Using long-term condition monitoring data with non-Gaussian noise for online diagnostics;Mechanical Systems and Signal Processing;2023-10

4. A New Prediction Method of Tool Life Considering Cognitive Uncertainty by Delayed Rejection Adaptive Sampling;2023 IEEE 19th International Conference on Automation Science and Engineering (CASE);2023-08-26

5. Overview of titanium alloy cutting based on machine learning;The International Journal of Advanced Manufacturing Technology;2023-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3