Control of Ablation Depth and Surface Structure in P3 Scribing of Thin-Film Solar Cells by a Picosecond Laser

Author:

Zhao Xin12,Cao Yunfeng12,Nian Qiong13,Cheng Gary13,Shin Yung C.12

Affiliation:

1. Center for Laser-Based Manufacturing, Purdue University, West Lafayette, IN 47907;

2. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

3. School of Industrial Engineering, Purdue University, West Lafayette, IN 47907

Abstract

In this paper, precise P3 scribing of thin-film solar cells (AZO/CIGS/Mo/Glass) via a picosecond laser is investigated. A parametric study is carried out for P3 scribing to study the effects of laser fluence and overlap ratio on ablation depth and slot quality, supported by the numerical prediction using a two-temperature model. The optimum scribing conditions are determined, and the potential processing speed is increased. Laser induced periodic surface structures are also presented after the scribing process, which can potentially enhance the absorption of the cell surface and consequently increase the cell efficiency.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Mechanics of Materials

Reference40 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3