Parametric Stability of Axially Accelerating Viscoelastic Beams With the Recognition of Longitudinally Varying Tensions

Author:

Chen Li-Qun1,Tang You-Qi2

Affiliation:

1. Department of Mechanics, Shanghai University, Shanghai 200444, China; Shanghai Institute of Applied Mathematics and Mechanics, Shanghai 200072, China; Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai 200072, China; Modern Mechanics Division, E-Institutes of Shanghai Universities, Shanghai 200072, China

2. School of Mechanical Engineering,Shanghai Institute of Technology,Shanghai 201418, China;Shanghai Institute of Applied Mathematics and Mechanics, Shanghai 200072, China

Abstract

In this paper, the parametric stability of axially accelerating viscoelastic beams is revisited. The effects of the longitudinally varying tension due to the axial acceleration are highlighted, while the tension was approximately assumed to be longitudinally uniform in previous studies. The dependence of the tension on the finite support rigidity is also considered. The generalized Hamilton principle and the Kelvin viscoelastic constitutive relation are applied to establish the governing equations and the associated boundary conditions for coupled planar motion of the beam. The governing equations are linearized into the governing equation in the transverse direction and the expression of the longitudinally varying tension. The method of multiple scales is employed to analyze the parametric stability of transverse motion. The stability boundaries are derived from the solvability conditions and the Routh-Hurwitz criterion for principal and sum resonances. In terms of stability boundaries, the governing equations with or without the longitudinal variance of tension are compared and the effects of the finite support rigidity are also examined. Some numerical examples are presented to demonstrate the effects of the stiffness, the viscosity, and the mean axial speed on the stability boundaries. The differential quadrature scheme is developed to numerically solve the governing equation, and the computational results confirm the outcomes of the method of multiple scales.

Publisher

ASME International

Subject

General Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3