Multi-scale analysis for dynamic stability of an axially accelerating viscoelastic beam subjected to combination parametric resonance

Author:

Raj Sanjay Kumar1,Sahoo Bamadev1ORCID,Nayak Alok Ranjan2,Panda Lokanath3

Affiliation:

1. Department of Mechanical Engineering, IIIT, Bhubaneswar, India

2. Department of Basic Science, IIIT, Bhubaneswar, India

3. Department of Mechanical Engineering, OUTR, Bhubaneswar, India

Abstract

The analytical–numerical approach has been adopted to investigate the nonlinear planner response of an axially accelerating beam with the coexistence of additive-type combination parametric resonance and internal resonance. This study includes geometric nonlinearity developed due to the stretching of the neutral layer, longitudinally varying tension, harmonically fluctuating speed, material, and modal dampings. For the suitable value of the system parameters, the second natural frequency of the moving system is approximately equal to three times of first mode, consequently, three-to-one internal resonance activates for a specific range of mean axial speed. The perturbation method of multiple time scales is adopted to solve the beams governing integro-partial differential equation motion with associated end conditions, resulting in complex variable modulation equations that control amplitude and phase modulation. The continuation algorithm technique is used to compute these modulation equations to study the impact of various control parameters, such as internal frequency detuning parameter, variable speed, pulley stiffness parameter, and axial stiffness through the frequency and amplitude response curves. Trivial state stability plots are also presented to illustrate the impact of material and external dampings on the stability of the system. The findings of this analysis are unique and still need to be addressed in the literature.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3