Dual Quaternion Synthesis of Constrained Robotic Systems

Author:

Perez Alba1,McCarthy J. M.1

Affiliation:

1. Robotics and Automation Laboratory, Dept. of Mechanical and Aerospace Engineering, University of California, Irvine, California 92697

Abstract

This paper presents a dual quaternion methodology for the kinematic synthesis of constrained robotic systems. These systems are constructed from one or more serial chains such that each chain imposes at least one constraint on the movement of the workpiece. Serial chains that have constrained workspaces can be synthesized by evaluating the kinematics equations of the chain on a finite set of task positions. In this case, the end-effector positions are known and the Denavit-Hartenberg parameters become design variables. Here we reformulate the kinematics equations in terms of successive screw displacements so the design variables are the coordinates defining the joint axes of the chain in a reference position. Then, dual quaternions defining these transformations are introduced to simplify the structure of the design equations. The result is a synthesis formulation that can be applied to a broad range of constrained serial chains, which can in turn be assembled into constrained parallel robots. We demonstrate the formulation and solution of the dual quaternion design equations for the spatial RPRP chain.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference44 articles.

1. Schoenflies, A., 1886, Geometrie der Bewegung in Synthetischer Darstellung, Leipzig, Germany. (See also the French translation: La Ge´ome´trie du Movement, Paris, 1983.)

2. Burmester, L., 1886, Lehrbuch der Kinematik, Verlag Von Arthur Felix, Leipzig, Germany.

3. Roth, B. , 1967, “Finite Position Theory Applied to Mechanism Synthesis,” ASME J. Appl. Mech., 34E, pp. 599–605.

4. Hartenberg, R., and Denavit, J., 1964, Kinematic Synthesis of Linkages, McGraw-Hill, New York, NY.

5. Sandor, G. N., and Erdman, A. G., 1984, Advanced Mechanism Design: Analysis and Synthesis, Vol. 2. Prentice-Hall, Englewood Cliffs, NJ.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3