Mechanism and Application of Attitude and Orbit Coupling Dynamics for Spacecraft Proximity Relative Motion

Author:

Hao An1,Jin Li1,Tianzhe Wang2,Jie Zang2,Xianliang Zhang3ORCID,Yong Hao1ORCID

Affiliation:

1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China

2. China Academy of Space Technology, Beijing 100081, China

3. School of Mathematics and Statistics, Taishan University, Taian 271021, China

Abstract

This paper analyzes the root causes of attitude-orbit coupling effects of spacecraft proximity relative motion in space precision collaborative tasks from three aspects: mathematical representation, physical definition, and engineering applications. At first, taking mathematical representation as the context, spacecraft proximity relative motion representations such as particle relative dynamic model, extended particle relative dynamic model, and dual-spiral-based relative dynamic model are investigated in detail. On this basis, the mechanism of attitude-orbit coupling effects originating from different mathematical representations is further investigated. Second, spiral theory–based attitude-orbit coupling relative dynamics is developed. The innovation of this work is extending the dual number representation from rigid body to flexible body, which makes it possible to describe the proximity relative motion between two rigid-flexible coupling spacecraft. Third, the application value of attitude-orbit coupling relative dynamic model in precision collaborative mission such as precision formation, rendezvous and docking, space manipulation, and on-orbit assembly is provided. Finally, simulation results verify the engineering significance of the attitude-orbit coupling relative dynamic model.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3