An Investigation of Pool Boiling Heat Transfer on Single Crystal Surfaces and a Dense Array of Cylindrical Cavities

Author:

Bon Bradley1,Klausner James2,McKenna Edward3

Affiliation:

1. e-mail:

2. e-mail:  Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611

3. Materials Science and Engineering, University of Florida, Gainesville, FL 32611 e-mail:

Abstract

The pool boiling heat transfer characteristics of smooth single crystal and densely packed cylindrical cavity surfaces were investigated using two highly wetting fluids, perfluoro-n-hexane (FC-72) and n-hexane. Three single crystal copper surfaces and five undoped single crystal silicon surfaces with different plane orientations were considered. In addition, silicon surfaces with densely packed cylindrical cavities with diameters ranging from 9 to 75 μm, depth ranging from 9 to 20 μm, and spacing ranging from 75 to 600 μm were tested for comparison. It is observed that the copper single crystal surfaces show increasing heat transfer coefficient with decreasing atomic planar density. The single crystal silicon surfaces show increasing heat transfer coefficient with increasing atomic planar density. Plausible molecular scale mechanisms are discussed. In contrast, the silicon surfaces seeded with cylindrical cavities having diameters of 27 μm or less generally yield higher heat transfer coefficients than the single crystal silicon surfaces. A decrease in the cavity spacing results in a larger number of cavities on the surface, and the heat transfer coefficient increases as a result. Cavity depths of 6 and 20 μm result in the same heat transfer coefficient irrespective of cavity diameter. The nucleation site density for the cylindrical cavity surfaces is measured and reported at low superheat using a novel imaging technique.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference40 articles.

1. Comparison of Nucleation Site Density for Pool Boiling and Gas Nucleation;ASME J. Heat Transfer,2006

2. Heterogeneous Nucleation on Ultra Smooth Surfaces;Exp. Therm. Fluid Sci.,2011

3. The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer;ASME J. Heat Transfer,2009

4. Film Boiling Incipience at the Departure From Natural Convection on Flat, Smooth Surfaces;ASME J. Heat Transfer,1998

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3