Whole Field Measurements to Understand the Role of Varying Depths of Nucleation Site on Vapor Bubble Dynamics and Heat Transfer Rates

Author:

Narayan L Surya1,Vijaykumar Pasi1,Srivastava Atul1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

Abstract

Abstract This work studies the possible effects of varying depths of cavity on bubbling features and the associated heat transfer rates in nucleate pool boiling regime. A single vapor bubble has been generated on a substrate with a cylindrical cavity at its center that acts as the nucleation site. Experiments have been conducted for three cavity depths (250, 500, and 1000 μm), while keeping its throat diameter constant at 200 μm. With the bulk fluid maintained under saturated conditions, for each cavity depth, surface superheat level has been varied in the range of ΔTsuperheat = 8, 10 and 12 °C. A gradient-based visualization technique, coupled with a high speed camera, has been employed to simultaneously map the changes in thermal gradients during the formation of the vapor bubble as well as bubble dynamic parameters. The image sequence obtained has been qualitatively and quantitatively analyzed to elucidate the dependence of bubbling features and various heat transfer processes on cavity depth. With an increase in the depth of cavity, the net effect of reduction in the available thermal energy due to the increased convection effects and significant depletion of superheated layer are identified as the dominant heat transfer processes that influence the bubbling features. Furthermore, based on the statistics of bubble departure characteristics, the cavity with higher depth (1000 μm) showed a much stable bubble formation with minimal variation in the bubble departure frequency as compared to the bubbling features from a cavity with smaller depth (250 μm). Evaporative heat transfer process has been identified as the primary cause for increased inconsistency of bubbling features at high superheat conditions for experiments performed for low cavity depths.

Funder

Science and Engineering Research Board

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3