The Dynamic Stability of Rotor/Stator Radial Rubs in Rotating Machinery

Author:

Ehrich F. F.1

Affiliation:

1. Design Technology Operation/Lynn Aircraft Engine Group, General Electric Co., Lynn, Mass.

Abstract

The classic phenomenon of “dry friction whip,” generally associated with unlubricated journal bearings, is here reconsidered as playing an important role in the dynamic stability, and consequent integrity of radial rubs in all close clearance rotating machinery, particularly in turbomachinery elements such as labyrinth seals and blade tips. A simple analysis is completed for large (runaway) amplitudes of whipping on an analytic model which includes the stator as an independent dynamic system. Whirl frequencies are computed as a function of rotor and stator natural frequencies and damping. A stability criterion is developed as a function of these same variables. Testing on a simple experimental model gives general qualitative agreement to predicted trends, but is not conclusive quantitatively, probably because of the difficulty in simulating pure Coulomb friction at the rubbing interface. The simple generality that can be inferred from the set of derived stability criteria is that the broadest band of whip-free rubbing is achieved if rotor and stator dampings are made close to one another, and if the rotor and stator natural frequencies are kept dissimilar. Systems with identical rotor and stator natural frequencies are always unstable, and will whip at that same natural frequency. Systems with large stator damping will whip at rotor natural frequency. Systems with large rotor damping will whip at stator natural frequency.

Publisher

ASME International

Subject

General Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3