Motions of Articulated Towers and Moored Floating Structures

Author:

Chakrabarti S. K.1,Cotter D. C.1

Affiliation:

1. Chicago Bridge and Iron Technical Services Company, Plainfield, IL 60544

Abstract

A versatile and efficient method of analysis has been developed to analyze a mooring system composed of a floating structure, e.g., a ship, mooring lines, fenders, and an articulated tower. The floating structure is assumed to be large, but may have an arbitrary shape, and the tower is assumed to be axisymmetrical. Although the program treats the floating structure and tower as a system, each body may be examined alone in the absence of the other. The analysis is carried out in the time domain assuming rigid body motion, and the solution is generated by a forward integration scheme. This approach permits nonlinear line and fender forces to be incorporated readily into the analysis. The exciting forces in the analysis are wind, current, and waves, which are not necessarily collinear. The waves can be single frequency or composed of multiple frequency components. The vessel is free to respond to the exciting forces in six degrees of freedom—surge, heave, sway, roll, pitch, and yaw. The tower is free to respond in two degrees of freedom—oscillation and precession. The analysis has been extensively verified with several different model tests for different structure configurations in regular and random seas. These include an articulated tower, a single-point mooring tanker system, a floating caisson and an inclined mooring tower.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3