Mechanical Properties Characterization and Finite Element Analysis of Epoxy Grouts in Repairing Damaged Pipeline

Author:

Kar Sing Lim1,Yahaya Nordin2,Valipour Alireza3,Zardasti Libriati2,Azraai Siti Nur Afifah2,Md Noor Norhazilan2

Affiliation:

1. Faculty of Civil Engineering and Earth Resources, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia e-mail:

2. Faculty of Engineering, School of Civil Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia e-mail:

3. Department of Civil Engineering, Shiraz Branch, Islamic Azad University, Shiraz 71993-3, Iran e-mail:

Abstract

Oil and gas pipelines are subjected to various types of deterioration and damage over long service years. These damaged pipes often experience loss of strength and structural integrity. Repair mechanisms have been developed in restoring the loading capacity of damaged pipelines, and composite repair systems have become popular over the past few years. The mechanical properties of the putty/grout are critical to their potential application as infill materials in structural repair. In this paper, the compression, tensile, and flexural behavior of four epoxy grouts was investigated through laboratory tests. The stiffness of the grouts for compression, tensile, and flexural was found to be 6 GPa to 18 GPa, 4 GPa to 15 GPa, and 4 GPa to 12 GPa, respectively. The ultimate strength for all grouts was found from 62 MPa to 87 MPa, 18 MPa to 38 MPa, and 34 MPa to 62 MPa under compression, tensile, and flexural tests, respectively. The behavior of all the tested grouts is discussed. A finite element (FE) model simulating a composite-repaired pipe was developed and compared with past studies. The FE results show a good correlation with experimental test with margin of error less than 10%. By replacing the infill properties in FE model to mimic the used of different infill material for the repair, it was found that about 4–8% increment in burst pressure can be achieved. This signifies that the role of infill material is not only limited to transferring the load, but it also has the potential to increase overall performance of composite-repaired pipe.

Funder

Universiti Teknologi Malaysia

Universiti Malaysia Pahang

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3