Estimation of Pressure Drop of Two-Phase Flow in Horizontal Long Pipes Using Artificial Neural Networks

Author:

Shadloo Mostafa Safdari12,Rahmat Amin3,Karimipour Arash4,Wongwises Somchai56

Affiliation:

1. CORIA-CNRS (UMR 6614), Normandie University, INSA of Rouen, 76000 Rouen, France;

2. Institute of Chemical Process Engineering, University of Stuttgart, Stuttgart 70199, Germany

3. School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK

4. Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam

5. Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand;

6. National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand

Abstract

Abstract Gas–liquid two-phase flows through long pipelines are one of the most common cases found in chemical, oil, and gas industries. In contrast to the gas/Newtonian liquid systems, the pressure drop has rarely been investigated for two-phase gas/non-Newtonian liquid systems in pipe flows. In this regard, an artificial neural networks (ANNs) model is presented by employing a large number of experimental data to predict the pressure drop for a wide range of operating conditions, pipe diameters, and fluid characteristics. Utilizing a multiple-layer perceptron neural network (MLPNN) model, the predicted pressure drop is in a good agreement with the experimental results. In most cases, the deviation of the predicted pressure drop from the experimental data does not exceed 5%. It is observed that the MLPNN provides more accurate results for horizontal pipelines in comparison with other empirical correlations that are commonly used in industrial applications.

Funder

Alexander von Humboldt Foundation

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3