Pressure Drop Estimation of Two-Phase Adiabatic Flows in Smooth Tubes: Development of Machine Learning-Based Pipelines

Author:

Bolourchifard Farshad1,Ardam Keivan1,Dadras Javan Farzad1,Najafi Behzad1ORCID,Vega Penichet Domecq Paloma2,Rinaldi Fabio1ORCID,Colombo Luigi Pietro Maria1ORCID

Affiliation:

1. Dipartimento di Energia, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy

2. Escuela Técnica Superior de Ingenieros Industriales, Universidad Politecnica de Mardrid, c/Jose Gutiérrez Abascal 2, 28006 Madrid, Spain

Abstract

The current study begins with an experimental investigation focused on measuring the pressure drop of a water–air mixture under different flow conditions in a setup consisting of horizontal smooth tubes. Machine learning (ML)-based pipelines are then implemented to provide estimations of the pressure drop values employing obtained dimensionless features. Subsequently, a feature selection methodology is employed to identify the key features, facilitating the interpretation of the underlying physical phenomena and enhancing model accuracy. In the next step, utilizing a genetic algorithm-based optimization approach, the preeminent machine learning algorithm, along with its associated optimal tuning parameters, is determined. Ultimately, the results of the optimal pipeline provide a Mean Absolute Percentage Error (MAPE) of 5.99% on the validation set and 7.03% on the test. As the employed dataset and the obtained optimal models will be opened to public access, the present approach provides superior reproducibility and user-friendliness in contrast to existing physical models reported in the literature, while achieving significantly higher accuracy.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3