Affiliation:
1. Department of Energy Engineering, University of Illinois at Chicago Circle, Chicago, Ill. 60680
Abstract
Measurements have been made of heat transfer near atmospheric pressure in the post dryout region of air-water dispersed flow in an electrically heated 12.95 mm i.d. vertical stainless steel tube with a length of 889 mm. The mass velocity ranges from 30 to 83 kg/m2·s, and the average wall heat flux is varied from 6.4 to 36.2 kW/m2 in the experiments. Correlation of a theoretical analysis with the measured wall temperatures suggests that the effectiveness of wall-to-drop heat transfer depends mainly on the wall superheat for surface temperatures below the minimum film boiling temperature. The local two-phase heat transfer coefficient decreases with increasing wall temperature. It is also found that the thermal entrance length for two-phase dispersed flow exceeds that of the single-phase gas flow, and that it decreases with an increase in wall temperature.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献