Development of a Pressurized MCFC/MGT Hybrid System

Author:

Azegami Osamu1,Hamai Michihiko2,Itou Kazuhiko3,Higuchi Shinichiro4

Affiliation:

1. Toyota Central R&D Laboratories, Inc., Aichi, Japan

2. Toyota Motor Corporation, Aichi, Japan

3. Ishikawajima-Harima Heavy Industries Company, Ltd., Tokyo, Japan

4. Toyota Turbine and Systems, Inc., Aichi, Japan

Abstract

A pressurized molten carbonate fuel cell (MCFC) and a micro gas turbine (MGT) hybrid power system has been developed to demonstrate high power generation efficiency (target of 55%), very low NOx emissions, and the operation using high-temperature gasification gas (biogas) as its fuel. The MCFC generator is pressurized, and is operating on process air supplied by the compressor of the MGT and reformed fuel. The power system achieves increased power output and higher efficiency thanks to its utilization by the gas turbine generator of thermal energy from the pressurized MCFC exhaust gas. The MGT is a single-shaft gas turbine that powers a high-speed direct-drive alternator. A heat recovery steam generator (HRSG) and the low-temperature heat exchanger of a hot water driven absorption refrigeration machine are also equipped using the heat recovered from the MGT exhaust gas. The MGT combustor plays an important role during system start-up. But the system is able to operate with no combustor firing in the range of 75% to 100% load. Therefore the NOx emissions are almost zero. The demonstration of this system was carried out at the 2005 World Exposition, Aichi, Japan. Wood waste that had to be cut during the construction of the EXPO 2005 site and waste plastic bottles at 1200°C in a high-temperature gasifier produce hydrogen and carbon monoxide. The MCFC/MGT hybrid system can use both high-temperature gasification gas (biogas) as well as Town Gas as its fuel. This system was started in February 22nd, and was operated by controlling from Distributed Power Supply Management System. A maximum efficiency was 52% at 300kW, and the total on-site operating time reached about 5200 hours with no failures. After the end of the half-year term of Aichi Expo., this system will be located to Central Japan Airport City, and the endurance test of next phase will be continued there.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3