Hybrid Simulation Facility Based on Commercial 100 kWe Micro Gas Turbine

Author:

Ferrari Mario L.1,Pascenti Matteo1,Bertone Roberto1,Magistri Loredana1

Affiliation:

1. Thermochemical Power Group (TPG), Dipartimento di Macchine, Sistemi Energetici e Trasporti (DiMSET), Università di Genova, via Montallegro 1, Genova 16145, Italy

Abstract

A new high temperature fuel cell-micro gas turbine physical emulator has been designed and installed in the framework of the European Integrated Project “FELICITAS” at the Thermochemical Power Group (TPG) laboratory located at Savona. The test rig is based on a commercial 100 kWe recuperated micro gas turbine (mGT) (Turbec T100) modified to be connected to a modular volume designed for physical emulation of fuel cell stack influence. The test rig has been developed starting with a complete theoretical analysis of the micro gas turbine design and off-design performance and with the definition of the more flexible layout to be used for different hybrid system (molten carbonate fuel cell or solid oxide fuel cell) emulation. The layout of the system (connecting pipes, valves, and instrumentation, in particular mass flow meter locations) has been carefully designed, and is presented in detail in this paper. Particular attention has been focused on the viscous pressure loss minimization: (i) to reduce the unbalance between compressor and expander, (ii) to maintain a high measurement precision, and (iii) to have an effective plant flexibility. Moreover, the volume used to emulate the cell stack has been designed to be strongly modular (different from a similar system developed by U.S. Department Of Energy-National Energy Technology Laboratory) to allow different volume size influence on the mGT rig to be easily tested. The modular high temperature volume has been designed using a computational fluid dynamics (CFD) commercial tool (FLUENT). The CFD analysis was used (i) to reach a high level of uniformity in the flow distribution inside the volume, (ii) to have a velocity field (m/s) similar to the one existing inside the emulated cell stack, and (iii) to minimize (as possible) the pressure losses. The volume insulation will also allow to consider a strong thermal capacity effect during the tests. This paper reports the experimental results of several tests carried out on the rig (using the mGT at electrical stand-alone conditions with the machine control system operating at constant rotational speed) at different load values and at both steady-state and transient conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3