Mechanism of the Interaction Between Casing Treatment and Tip Leakage Flow in a Subsonic Axial Compressor

Author:

Lu Xingen1,Chu Wuli1,Zhu Junqiang2,Wu Yanhui1

Affiliation:

1. Northwestern Polytechnical University, Xi’an, P. R. China

2. Chinese Academy of Sciences, Beijing, P. R. China

Abstract

The use of slots and grooves in the shroud over the tips of compressor blades, known as casing treatment, is known as a powerful method to control tip leakage flow through the clearance gap and enhance the flow stability in compressors. This paper present a detailed steady and unsteady numerical studies of the coupled flow through rotor blade passages and two different types of casing treatment for a modern subsonic axial-flow compressor rotor. Particular attention was given to examining the interaction between the tip leakage flow and the casing treatment. In order to validate the multi block model applied in the rotor blade end-wall region, the computational results for the modern subsonic compressor rotor both with and without casing treatment were correlated with available experimental test data for estimation of the global performance. Detailed analyses of the flow visualization at the tip have exposed the different tip flow topologies between the cases with casing treatment and with untreated smooth wall. It was found that the primary stall margin enhancement afforded by the casing treatment is a result of the tip clearance flow manipulation. The repositioning of the tip clearance vortex further towards the trailing edge of the blade passage and delaying the movement of incoming/tip clearance flow interface to the leading edge plane are the physical mechanisms responsible for extending the compressor stall margin.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3