An Evaluation of Passive Wall Treatment with Circumferential Grooves at the Casing of the First and Second Blade Rotor Rows of a High-Performance Multi-Stage Axial Compressor

Author:

Diaz Ruben Bruno1,Tomita Jesuino Takachi1ORCID,Bringhenti Cleverson1ORCID,Silva Franco Jefferds dos Santos1ORCID,Cavalca Diogo Ferraz2

Affiliation:

1. Aeronautics Institute of Technology, São José dos Campos 12228-900, Brazil

2. Avibras Aerospace Industry, São José dos Campos 12247-016, Brazil

Abstract

The internal losses in the tip clearance region strongly influence the compressor performance and its operational range. Previous research proved that passive wall treatments with circumferential grooves in axial compressors effectively increase the compressor stall margin. The vortex generated inside the circumferential grooves creates a resistance to the flow that leaks into the tip clearance region of the compressor. However, most works found in the literature on circumferential grooves in axial compressors deal only with high-performance single-stage axial compressors. Therefore, there is a need to investigate and analyze the behavior of circumferential grooves in a multi-stage environment. In the present work, a passive wall treatment with circumferential grooves was implemented in a multi-stage axial compressor. Different configurations of circumferential grooves were created at the casing of the first and second rotor rows used in a four-stage axial flow compressor. Numerical simulations were performed to evaluate the influence of the circumferential grooves on the performance of a multi-stage axial compressor. The results obtained after the simulations for the different circumferential groove configurations were compared with the results obtained for the compressor without casing treatment (smooth wall) for different rotational speeds. Furthermore, the complete compressor map characteristics were simulated for the different casing treatment configurations, and the results were compared with the compressor characteristics of the smooth wall case. The passive wall treatment with circumferential grooves produced changes in the multi-stage axial compressor flow field, especially in the tip clearance region, improving the compressor stability mainly for part load speeds.

Funder

National Council for Scientific and Technological Development (CNPq) and AVIBRAS Aerospace Industry

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3