Measurements of Combustor Velocity and Turbulence Profiles

Author:

Goebel S. G.1,Abuaf N.1,Lovett J. A.1,Lee C.-P.2

Affiliation:

1. General Electric Corporate Research and Development, Schenectady, NY

2. General Electric Aircraft Engine, Evendale, OH

Abstract

The axial and swirl velocity and turbulence profiles downstream of a small-scale combustor were measured using a Laser Doppler Velocimeter. The effects of combustor geometry (nozzle swirl and liner mixing and dilution holes), operating conditions (mass flow and pressure) and combustion were independently examined. For the combustion tests, the combustor exit temperature profiles were also measured with an insertion thermocouple. The normalized velocity profiles showed no effect of mass flow, pressure or overall velocity on the combustor exit profiles. For the low-swirl fuel nozzle, levels of turbulence were fairly constant without or with combustion. However, with the high-swirl fuel nozzle, the level of swirl decreased as the firing temperature increased (to conserve angular momentum). The effect of swirl reduction could also be seen in the turbulence levels which also decreased. This showed that the mean swirl was generating much of the turbulence. It was also found from testing various combustor geometries that the dilution jets significantly disrupted and thereby reduced the level of swirl exiting from the combustor.

Publisher

American Society of Mechanical Engineers

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3